CERTIFICATE OF CONFORMITY

Issued to:

Huawei Digital Power Technologies Co., Ltd. Office 01, 39th Floor, Block A, Antuoshan Headquarters Towers, 33 Antuoshan 6th Road, Futian District, Shenzhen, 518043, P.R. China

For the product:

Trade name:

Smart PCS

Type/Model: PCS2000-108K-MB1

Ratings: See Annex

Manufactured by: Huawei Digital Power Technologies Co., Ltd. Office 01, 39th Floor, Block A, Antuoshan Headquarters Towers, 33 Antuoshan 6th Road, Futian District, Shenzhen, 518043, P.R. China

Requirements: Engineering Recommendation G99 Issue 1 – Amendment 10:2024 (G99/1-10:2024) (Requirements for Type A Generating Module)

This Test Certificate is granted on account of an examination by DEKRA, the results of which are laid down in a confidential file no. 6199027.50.

The examination has been carried out on one single specimen of the product. The Attestation does not include an assessment of the manufacturer's production. Conformity of his production with the specimen tested by DEKRA is not the responsibility of DEKRA.

This Test Certificate expires at the latest on 18 November 2029 or expires upon withdrawal of one of the above mentioned standards.

Shanghai, 18 November 2024

Number: 6199027.01COC

DEKRA Testing and Certification (Shanghai) Ltd.

Clift

Cliff Lin Certification Manager

 $\ensuremath{\mathbb{C}}$ Integral publication of this certificate and adjoining reports is allowed

DEKRA Testing and Certification (Shanghai) Ltd. No.250, Jiangchangsan Road, Jing'an District, Shanghai, 200436 People's Republic of China T +86 21 6056 7600 F +86 21 6056 7555 www.dekra-product-safety.com ESA-CER-F021 v4.1

Annex

Document no. : 6199027.01COC

Ratings of the test product:

Operating temperature range: - 25°C to + 65°C

Protective class: I

Ingress protection rating: IP55

Power factor range (adjustable): 1 leading...1 lagging

Overvoltage category: III(Mains), II(DC)

Operating altitude: 4000 m

Inverter Topology: Non-Isolation

PCS2000-108K-MB1:

Input port: max. voltage 1100 V, max. continuous current 187.1 A, Operating range 550 -950 V Output port: nominal voltage 380/400/415 V, 420/440/480 V, 50/60 Hz, rated power 108 kW, rated apparent power 108 kVA, rated current 164.1 A, 380 Vac; 155.9 A, 400 Vac; 150.3 A 415 Vac; 148.5 A, 420 Vac; 141.8 A, 440 Vac; 130.0 A, 480 Vac;

Annex

Document no.

: 6199027.01COC

G99/1-10 A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules

Extract form test report number:

6199027.50

Model: P	CS2000-108K-	MB1			Р
Test 1:					
		Measured	Measured	Measured	Test Time
Measured	d Voltage (V)	Frequency (Hz)	Power (W)	Power factor	(seconds)
L1	195.91				
L2	195.68	47.00	108576.64	1.000	20
L3	195.69				
Test 2:					
		Measured	Measured	Measured	Test Time
Measured	d Voltage (V)	Frequency (Hz)	Power (W)	Power factor	(Minutes)
L1	195.89				
L2	195.64	47.50	108573.01	1.000	90
L3	195.65				
Test 3:					
Magazira		Measured	Measured	Measured	Test Time
Measured	d Voltage (V)	Frequency (Hz)	Power (W)	Power factor	(Minutes)
L1	253.26				
L2	253.08	51.49	108431.93	1.000	90
L3	253.08				
Test 4:					
Magazira		Measured	Measured	Measured	Test Time
measured	d Voltage (V)	Frequency (Hz)	Power (W)	Power factor	(Minutes)
L1	253.39				
L2	253.19	52.00	108595.18	1.000	15
L3	253.19				
Test 5:					
Moosuro		Measured	Measured	Measured	Test Time
measured	d Voltage (V)	Frequency (Hz)	Power (W)	Power factor	(Minutes)
L1	230.38				
L2	230.20	50.00	108574.31	1.000	90
L3	230.20				
Test 6:		·			
Measured	d Voltage (V)	Ramp range	Test frequency ramp	Test Duration	Confirm no trip
19	95.77	47.0 Hz to 52.0 Hz	+1 Hzs ⁻¹	5.0 s	No trip
25	53.24	52.0 Hz to 49.0 Hz	-1 Hzs ⁻¹	3.0 s	No trip
2:	03.24	52.0 HZ to 49.0 HZ	-I HZS'	3.U S	ινο τηρ

Ρ

Document no.

: 6199027.01COC

2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12, and measurements for the 2nd – 13th harmonics should be provided. The results need to

requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12, and measurements for the $2^{nd} - 13^{th}$ harmonics should be provided. The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 61000-3-12 for three phase equipment. For three phase **Power Generating Modules**, measurements for all phases should be provided.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

The rating of the **Power Generating Module** (per phase) should be provided below, and the Total Harmonic Distortion (THD) and Partial Weighted Harmonic Distortion (PWHD) should be provided at the bottom of this section.

Model: PCS2000-108K-MB1

Power Generating Module tested to BS EN 61000-3-12

			1 10 BS EN 6	1000-3-12		-			
(rpp)	nerating Mo			36 kVA			Harmonic % = Measured Value (A) x 23/rating per phase (kVA)		
Single or the single phase of the single phase	Three-pha	Three-phase inverter							
Harmonic	At 45-55%	of Register	ed Capacity	y				Limit in BS	EN 61000-
Harmonic	Measured	Value (MV)	in Amps	Measured	Value	e (MV)	in %	3-12	
	L1	L2	L3	L1	L	.2	L3	1 phase	3 phase
2	0.154	0.121	0.059	0.098	0.0)77	0.038	8%	8%
3	0.099	0.071	0.051	0.063	0.0)45	0.033	21.6%	Not stated
4	0.246	0.236	0.260	0.157	0.1	151	0.166	4%	4%
5	0.203	0.205	0.204	0.130	0.1	131	0.130	10.7%	10.7%
6	0.014	0.072	0.070	0.009	0.0	046	0.045	2.67%	2.67%
7	0.104	0.094	0.052	0.066	0.0	060	0.033	7.2%	7.2%
8	0.040	0.034	0.027	0.026	0.0)22	0.017	2%	2%
9	0.099	0.138	0.084	0.063	0.0	88	0.054	3.8%	Not stated
10	0.086	0.082	0.042	0.055	0.0)52	0.027	1.6%	1.6%
11	0.520	0.550	0.538	0.332	0.3	351	0.344	3.1%	3.1%
12	0.020	0.018	0.020	0.013	0.0)12	0.013	1.33%	1.33%
13	0.327	0.284	0.296	0.209	0.1	181	0.189	2%	2%
THD	-	-	-	0.47%	0.4	7%	0.46%	23%	13%
PWHD	-	-	-	1.45%	1.4	6%	1.42%	23%	22%

THD = Total Harmonic Distortion

PWHD = Partial Weighted Harmonic Distortion

Harmonic	At 100% of	f Registered	l Capacity				Limit in BS	EN 61000-	
Harmonic	Measured	Value (MV)	in Amps	Measured	Value (MV)	in %	3-12		
	L1	L2	L3	L1	L2	L3	1 phase	3 phase	
2	0.490	0.587	0.293	0.313	0.375	0.187	8%	8%	
3	0.184	0.143	0.126	0.118	0.091	0.081	21.6%	Not stated	
4	0.615	0.486	0.575	0.393	0.310	0.367	4%	4%	
5	0.305	0.322	0.305	0.195	0.206	0.195	10.7%	10.7%	
6	0.160	0.062	0.141	0.103	0.040	0.090	2.67%	2.67%	
7	0.151	0.139	0.098	0.097	0.089	0.062	7.2%	7.2%	
8	0.095	0.120	0.099	0.060	0.077	0.063	2%	2%	
9	0.061	0.135	0.142	0.039	0.086	0.091	3.8%	Not stated	
10	0.299	0.294	0.152	0.191	0.188	0.097	1.6%	1.6%	
11	0.731	0.640	0.614	0.467	0.409	0.392	3.1%	3.1%	
12	0.145	0.089	0.111	0.093	0.057	0.071	1.33%	1.33%	
13	0.631	0.537	0.545	0.403	0.343	0.348	2%	2%	
THD	-	-	-	0.87%	0.80%	0.73%	23%	13%	
PWHD	-	-	-	2.49%	2.20%	2.10%	23%	22%	

THD = Total Harmonic Distortion

PWHD = Partial Weighted Harmonic Distortion

3. Power Quality – Voltage fluctuations and Flicker: P

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC P28.

The standard test impedance is 0.4 Ω for a single phase **Power Generating Module** (and for a two phase unit in a three phase system) and 0.24 Ω for a three phase **Power Generating Module** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

: 6199027.01COC

Test start dat	е	20	024	-10-31		Test end	date		202	24-10-31		
Test location		N	lo.9	9, Hongye	Road, Suz	oad, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China						
Model: PCS2	2000-1	08K-MB [·]	1									
			Starting				Stoppir	ng		Ru	Inning	
		d(max [%]	()	d(c) [%]	d(t) [%]	d(max) [%]	d(c) [%	6] d(t)	[%]	Pst [%]	Plt 2 hours [%]	
Measured	L1	0.364	1	0.072	0	0.265	0.072	! (0	0.0107	0.0106	
Values at test	L2	0.345	5	0.158	0	0.300	0.001		0	0.0107	0.0105	
impedance	L3	0.348	3	0.152	0	0.301	0.004	. (0	0.0107	0.0106	
Normalised	L1	0.364	1	0.072	0	0.265	0.072	2	0	0.0107	0.0106	
to standard impedance	L2	0.345	5	0.158	0	0.300	0.001		0	0.0107	0.0105	
	L3	0.348	3	0.152	0	0.301	0.004	. (0	0.0107	0.0106	
Normalised	L1	N/A		N/A	N/A	N/A	N/A	N	/A	N/A	N/A	
to required maximum	L2	N/A		N/A	N/A	N/A	N/A	N	/A	N/A	N/A	
impedance	L3	N/A		N/A	N/A	N/A	N/A	N	/A	N/A	N/A	
Limits set und BS EN 61000 11		4		3.3	3.3	4	3.3	3	.3	1.0	0.65	
Test Impedar	nce	R	0.2	24	Ω	XI		0.15			Ω	
Standard R R		R	-	24 * 4 ^	Ω	XI		0.15 * 0.25 ^			Ω	
Maximum Impedance		R	N/	'A #	Ω	XI		N/A #			Ω	
* Applies to tl	nree pl	hase and	d sp	olit single p	hase Powe	r Generati	ing Mod	ules.			•	

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system

: 6199027.01COC

4. Power quality – DC injection:

Ρ

Ρ

The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels $\pm 5\%$. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current

where the base current is the **Registered Capacity** (W) / Vphase. The % DC injection should not be greater than 0.25%.

Model: PCS2000-108K-MB1

Three-phase									
Test power level	10%			55%			100%		
Test power level	L1	L2	L3	L1	L2	L3	L1	L2	L3
Recorded DC injection value in Amps	0.353	0.675	1.029	0.331	0.633	0.994	0.371	0.750	0.997
as % of rated AC current	0.08%	0.14%	0.22%	0.07%	0.13%	0.21%	0.08%	0.16%	0.21%
Limit	0.25%			0.25%			0.25%		

5. Power Factor:

The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2

Note that the value of voltage stated in brackets assumes a LV connection. This should be adjusted for HV as required.

Model: PCS2000-108K-MB1									
Voltage 0.94 pu (216.2 V) 1 pu (230 V) 1.1 pu (253 V)									
Measured value	0.9999	0.9998	1.0000						
Power Factor Limit > 0.95 > 0.95 > 0.95									

6. Protection	- Frequency t	ests:					Р		
		d out in accorda For "no trip test			For trip tests, fr	equenc	y and		
Model: PCS20	00-108K-MB1								
Function Setting Trip test "No trip tests"									
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confi trip	rm no		
U/F stage 1	47.5 Hz	20 s	47.40 Hz	20.136 s	47.7 Hz 30 s	No tri	р		
U/F stage 2	47.0 Hz	0.5 s	46.94 Hz	535.95 ms	47.2 Hz 19.5 s	No tri	р		
					46.8 Hz 0.45 s	No tri	р		
O/F	52.0Hz	0.5 s	52.07 Hz	542.50 ms	51.8 Hz 120 s	No tri	р		
					52.2 Hz 0.45 s	No tri	р		
time delay a la trip tests" need	arger deviation d to be carried	than the minim	um required to g ± 0.2 Hz and	operate the pro	0.1 Hz. In orde ojection can be u t times as show	used. Th	e "No		

Ρ

Document no. :

6199027.01COC

7. Protection – Voltage tests:

These tests should be carried out in accordance with Annex A.7.1.2.2. For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Note that the value of voltage stated below assumes a LV connection This should be adjusted for HV taking account of the VT ratio as required.

Model: PCS2000-108K-MB1

L1-N

Function	Set	ting	Trip	test	"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V	0.8 pu (184 V)	2.5 s	182.877 V	2.563 s	188 V 5.0 s	No trip	
					180 V 2.45 s	No trip	
O/V stage 1	1.14 pu (262.2 V)	1.0 s	263.211 V	1.020 s	258.2 V 5.0 s	No trip	
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.921 V	539.4 ms	269.7 V 0.95 s	No trip	
					277.7 V 0.45 s	No trip	

Note: for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Model: PCS2000-108K-MB1

L2-N							
Function	Set	ting	Trip	test	"No trip tests"		
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip	
U/V	0.8 pu (184 V)	2.5 s	183.041 V	2.542 s	188 V 5.0 s	No trip	
					180 V 2.45 s	No trip	
O/V stage	1.14 pu (262.2 V)	1.0 s	263.288 V	1.040 s	258.2 V 5.0 s	No trip	
O/V stage 2	1.19 pu (273.7 V)	0.5 s	274.065 V	540.01 ms	269.7 V 0.95 s	No trip	
					277.7 V 0.45 s	No trip	

Note: for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

: 6199027.01COC

Model: PCS20	00-108K-MB1											
L3-N												
Function Setting Trip test "No trip tests"												
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip						
U/V	0.8 pu (184 V)	2.5 s	182.804 V	2.540 s	188 V 5.0 s	No trip						
					180 V 2.45 s	No trip						
O/V stage 1	1.14 pu (262.2 V)	1.0 s	263.283 V	1.020 s	258.2 V 5.0 s	No trip						
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.834 V	539.23 ms	269.7 V 0.95 s	No trip						
					277.7 V 0.45 s	No trip						

Note: for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Model: PCS20	00-108K-MB1							
L1-L2-L3-N								
Function Setting Trip test "No trip test								
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip		
U/V	0.8 pu (184 V)	2.5 s	183.041 V	2.519 s	188 V 5.0 s	No trip		
					180 V 2.45 s	No trip		
O/V stage 1	1.14 pu (262.2 V)	1.0 s	263.093 V	1.045 s	258.2 V 5.0 s	No trip		
O/V stage 2	1.19 pu (273.7 V)	0.5 s	274.587 V	540.28 ms	269.7 V 0.95 s	No trip		
					277.7 V 0.45 s	No trip		

Note: for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection – L		Р							
These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4. For test condition A, EUT output = 100 % Pn, test condition B, EUT output = 50 % to 66 % Pn, and test condition C, EUT output = 25 % to 33 % Pn.									
Model: PCS2000-	108K-MB1								
The following sub	set of tests sho	ould be recorde	ed in the follow	ing table.					
Test Power and imbalance									
Trip time. Limit is 0.5 s	177 ms	206 ms	165 ms	221 ms	208 ms	158 ms			

8. Loss of Mains Protection, Vector Shift Stability test:						
This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the Power Generating Module does not trip under positive / negative vector shift.						
Model: PCS2000-108K-MB1						
	Start Frequency	Change	Confirm	no trip		
Positive Vector Shift	49.5 Hz	+50 degrees	No trip			
Negative Vector Shift	50.5 Hz	- 50 degrees	No trip			

8. Loss of Mains Protection, RoCoF Stability test:					
This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the Power Generating Module does not trip for the duration of the ramp up and ramp down test.					
Model: PCS2000-108K-MB1					
Ramp range	Test frequency ramp:	Test Duration	Confirm	no trip	
49.0 Hz to 51.0 Hz +0.95 Hzs ⁻¹ 2.1 s No trip					
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip		

: 6199027.01COC

9. Limited Frequency Sensitive Mode – Over frequency test: The test should be carried out using the specific threshold frequency of 50.4 Hz and Droop of 10%. This test should be carried out in accordance with Annex A.7.1.3.

Ρ

Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4.

Alternatively, simulation results should be noted below:

Model: PCS2000-108K-MB1

Test sequence at Registered Capacity >80%	Measured Active Power Output (W)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	108545.34	50.00			
Step b) 50.45 Hz ±0.05 Hz	107451.80	50.45	9.88		
Step c) 50.70 Hz ±0.10 Hz	102022.28	50.70	9.93	Photovoltaic	
Step d) 51.15 Hz ±0.05 Hz	92306.43	51.15	9.98	array	10%
Step e) 50.70 Hz ±0.10 Hz	102010.18	50.70	9.92	simulator	
Step f) 50.45 Hz ±0.05 Hz	107429.38	50.45	9.68		
Step g) 50.00 Hz ±0.01 Hz	108530.75	50.00			
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output (W)	Frequency (Hz)	Calculate droop (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	54207.39	50.00			
Step b) 50.45 Hz ±0.05 Hz	53124.98	50.45	9.98		
Step c) 50.70 Hz ±0.10 Hz	47729.89	50.70	10.00	Photovoltaic array simulator	
Step d) 51.15 Hz ±0.05 Hz	38012.26	51.15	10.00		10%
Step e) 50.70 Hz ±0.10 Hz	47640.26	50.70	9.87		
Step f) 50.45 Hz ±0.05 Hz	53110.23	50.45	9.84		
Step g) 50.00 Hz ±0.01 Hz	54212.93	50.00			

The frequency at each step should be maintained for at least one minute and the Active Power reduction in the form of a gradient determined and assessed for compliance with paragraph 11.2.3. The Droop should be determined from the measurements between 50.4 Hz and 51.15 Hz. The allowed tolerance for the frequency measurement shall be ± 0.05 Hz. The allowed tolerance for Active Power output measurement shall be $\pm 10\%$ of the required change in Active Power.

The resulting overall tolerance range for a nominal 10% Droop is +2.8% and -1.5%, ie a Droop less than 12.8% and greater than 8.5%.

Annex

Document no.

: 6199027.01COC

9-2. Power output with falling frequency test (For PV Inverter):						
Tests should prove that the Power Generating Module does not reduce output power as the frequency						
falls. These tests should	be carried out in acco	ordance with 11.2.3.1,	12.2.3.1, 13.2.3.1.			
Model: PCS2000-108K-	MB1					
Test sequence	Measured Active	Acceptable Active	Frequency	Primary p	ower	
	Power Output (W)	Power	(Hz)	source		
50.5 Hz for 5 minutes	100000.00	100% Registered	50.50	Photovoltaic		
50.5 HZ 101 5 Minutes	108608.28	Capacity	50.50	array simulator		
50.0 Hz for 5 minutes	108606.15	100% Registered	50.00	Photovolt		
50.0 HZ 101 5 Minutes	100000.15	Capacity	50.00	array simulator		
49.5 Hz for 5 minutes	108603.59	100% Registered	49.50	Photovolt	aic	
49.5 HZ 101 5 minutes	100003.59	Capacity	49.50	array simulator		
49.0 Hz for 5 minutes	108597.63	99% Registered	49.00	Photovoltaic		
49.01121013111110165	100397.03	Capacity	49.00	array simulator		
48.0 Hz for 5 minutes	108588.82	97% Registered	48.00	Photovolt	aic	
40.0112101 5 111110165	100300.02	Capacity	40.00	array simulator		
47.6 Hz for 5 minutes	108588.27	96.2% Registered	47.60	Photovolt	aic	
	100000.27	Capacity	47.00	array sim	ulator	
47.1 Hz for 20 s	108575.93	95% Registered	47.10	Photovoltaic		
47.1 112 101 20 5	100373.83	Capacity	47.10	array sim	ulator	

10. Protection – Re-connection timer.					Р		
Model: PCS200	Model: PCS2000-108K-MB1						
	Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1.						
Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.			ght to		
60 s	117.02 s	At 1.16 pu (266.2 V)	At 0.78 pu (180.0 V)	At 47.4 Hz	At 52	2.1 Hz	
Confirmation that generator does		No reconnection	No reconnection	No reconnection		No nection	
Recover to normal operation range after confirmation of no connection		Yes	Yes	Yes	Ŷ	′es	
Confirmation that the Power Generating Module shall reconnect		Reconnection after 117.02 s	Reconnection after 116.74 s	Reconnection after 115.74 s		nection 15.64 s	

: 6199027.01COC

11. Fault level contribution : These tests shall be carried out in accordance with EREC G99 Annex A.7.1.5.			
For Inverter output			
Time after fault	Volts	Amps	
20ms	142.02 / 87.87 / 55.15	239.04 / 170.05 / 67.94	
100ms	0.15 / 0.11 / 0.14	0.48 / 1.26 / 0.57	
250ms	0.05 / 0.11 / 0.25	0.47 / 1.25 / 0.58	
500ms	0.10 / 0.11 / 0.09	0.48 / 1.23 / 0.58	
Time to trip	0.042 s	In seconds	

: 6199027.01COC

12. Self-Monitoring solid state switching: No specified test requirements. Refer to An	nex A.7.1.6.
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.	N/A
13. Wiring functional tests: If required by para 15.2.1.	
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	N/A
14. Logic interface (input port).	
Confirm that an input port is provided and can be used to shut down the module.	Yes
Provide high level description of logic interface, e.g. details in 11.1.3.1 such as AC or DC signal (the additional comments box below can be used)	Yes
15. Cyber security	
Confirm that the Power Generating Module has been designed to comply with cyber security requirements, as detailed in 9.1.7.	Yes Manufacturer's declaration provided
Additional comments.	
Logic Interface:	
The PCSs can connect to the SmartLogger over FE or to a PC through the SmartLogger	to implement

The PCSs can connect to the SmartLogger over FE or to a PC through the SmartLogger to implement communication. You can use the Fusionsolar app, SmartLogger, embedded WebUI, or the network management software (such as the NetEco) on the PC to query information about the PCSs, such as energy yield, alarms, and running status. For example:

1. Interface protection has been tested and evaluated on basis of rated grid voltage $3/N/PE_{-}$, 230/400 V, 50Hz according to the grid code on page 1.

2. interface protection settings is limited to the authorized installer, password and seal provided to protect these from unpermitted interference. Inverters with multi-voltage and/or frequency ratings are available in difference versions based on output voltages and frequencies, the ratings on which the testing has been based was identified on pater tag and control panel.

 unauthorised access to factory safety parameters setting and software should be prohibited. A reset to the factory safety parameters requires retesting and verification in conjunction with the end-use system.
Protection integrated in inverter can not be used as an alternative central interface protection device at connection point.

-End-