

Form A2-3: Compliance Verification Report for Type A Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. <u>To obtain **Fully Type Tested** status (≤ 50 kW)</u>

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register. Tests 1 – 15 must all be completed and compliant for the **Power Generating Module** to be classified as **Fully Type Tested**.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

Where the **Manufacturer** is seeking to obtain **Type Tested** status for an **Interface Protection** device the appropriate section of Form A2-4 should be used.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form shall be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance shall be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the **Manufacturer's** reference number (the system reference), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

PGM technology		Grid-tied photovoltaic inverter				
Manufacturer name		FOXESS Co., Ltd.				
Address		Room A203, Building C, No 205, Binhai Six Road, New Airport Industry Area, Longwan District, Wenzhou, Zhejiang Province, China				
Tel	0510-68092998	Web site	www.fox-ess.com			
E:mail	info@fox-ess.com					
Registered Capacity		7.0/8.0/9.0/10.0/10.5 kW				
Energy sto Storage de	rage capacity for Electricity evices	NA				

There are four options for Testing: (1) **Fully Type Tested**(\leq 50 kW), (2) **Type Tested** product, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGM**s tests may be carried out at the time of commissioning (Form A4). **Type Tested** status is suitable for devices > 50 kW where the power quality aspects need consideration on a site by site basis in accordance with EREC G5 and EREC P28.

Insert Document reference(s) for Manufacturers' Information

Tested option:	1. Fully Type Tested	2. Type Tested product	3. One-off Manufacturers' Info.	4. Tested on Site at time of Commissioning
0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission		N/A	N/A	N/A
1. Operating Range	N/A	1		
2. PQ – Harmonics		1		
3. PQ – Voltage Fluctuation and Flicker		1		
4. PQ – DC Injection (Power Park Modules only)		1		
5. Power Factor (PF)		1		
6. Frequency protection trip and ride through tests		1		
7. Voltage protection trip and ride through tests		1		
8. Protection – Loss of Mains Test, Vector Shift and RoCoF Stability Test		✓		
9. LFSM-O Test		1		
10. Protection – Reconnection Timer		1		
11. Fault Level Contribution		1		
12. Self-monitoring Solid State Switch		NA		

There are four options for Testing: (1) **Fully Type Tested**(\leq 50 kW), (2) **Type Tested** product, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGM**s tests may be carried out at the time of commissioning (Form A4). **Type Tested** status is suitable for devices > 50 kW where the power quality aspects need consideration on a site by site basis in accordance with EREC G5 and EREC P28.

Insert Document reference(s) for Manufacturers' Information

Tested option:	1. Fully Type Tested	2. Type Tested product	3. One-off Manufacturers' Info.	4. Tested on Site at time of Commissioning
13. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)		NA		
14. Logic Interface (input port)		✓		
15. Cyber security		✓		

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above **Type Tested Manufacturer**'s reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site **Modifications** are required to ensure that the product meets all the requirements of EREC G99.

Signed	BEES	On behalf of	FOXESS Co., Ltd.
	4RD		

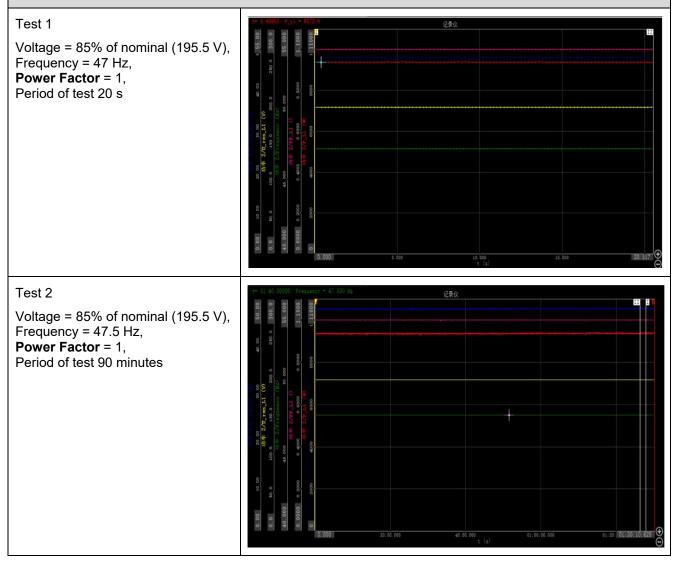
Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

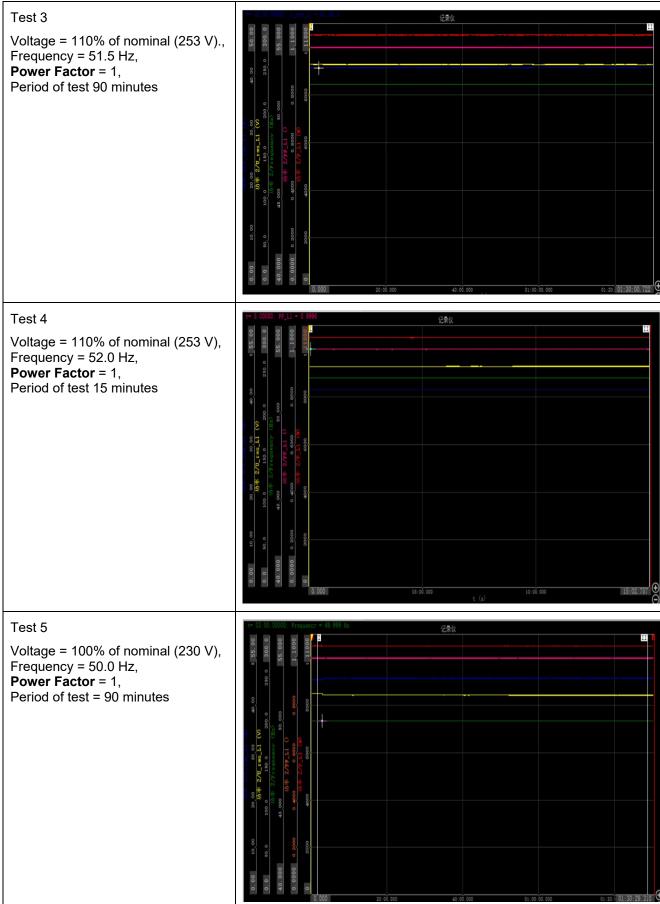
A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

1. Operating Range: Tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within \pm 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

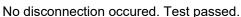

The Interface Protection shall be disabled during the tests.

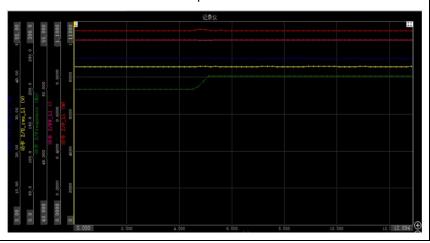
In case of a PV Power Park Module the PV primary source may be replaced by a DC source.


In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover Inverter/rectifier may be replaced by a DC source.

Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.

Note that the value of voltage stated in brackets assumes a **LV** connection. This should be adjusted for **HV** as required.





Test 6 RoCoF withstand

Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs-1 as measured over a period of 500 ms. Note that this is not expected to be demonstrated on site.

2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12, and measurements for the 2nd – 13th harmonics should be provided. The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment. For three phase **Power Generating Modules**, measurements for all phases should be provided. For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC G5.

The rating of the **Power Generating Module** (per phase) should be provided below, and the Total Harmonic Distortion (THD) and Partial Weighted Harmonic Distortion (PWHD) should be provided at the bottom of this section.

Power Generating Module tested to BS EN 61000-3-12											
Power Generating Module rating per phase (rpp)							Harmonic % = Measured Value (A) x 23/rating per phase (kVA)				
Single or three phase measurements (for single phase measurements, only complete L1 columns below).			Single phase								
Harmonic	At 45-55% of Registered Capacity						Limi	Limit in BS EN 61000-3-12			
	Measured Valu	ue (MV) in	Amps	Measured Val	ue (N	ЛV) ir	n %				
	L1	L2	L3	L1	L	L2 L3		3	1 phase	3 phase	
2	0.0211			0.07%					8%	8%	
3	0.3884			1.28%					21.6%	Not stated	
4	0.0140			0.05%					4%	4%	
5	0.3637			1.20%					10.7%	10.7%	
6	0.0150			0.05%	.05%			2.67%	2.67%		
7	0.1711			0.56%					7.2%	7.2%	

Power Generating Module tested to BS EN 61000-3-12

ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021

	L 3 3								
8	0.0151			0.05%				2%	2%
9	0.1484			0.49%				3.8%	Not stated
10	0.0215			0.07%				1.6%	1.6%
11	0.0412			0.14%				3.1%	3.1%
12	0.0125			0.04%				1.33%	1.33%
13	0.0551			0.18%				2%	2%
THD ¹				1.97%				23%	13%
PWHD ²				2.27%				23%	22%
Harmonic		At 100% c	of Regis	tered Capacity					0.0.0
	Measured valu	ue (MV) in	Amps	Measured value	ue (MV) in	%	Lin	hit in BS EN 6100	J-3-12
	L1	L2	L3	L1	L2	L	3	1 phase	3 phase
2	0.0475			0.16%				8%	8%
3	0.6236			2.05%				21.6%	Not stated
4	0.0156			0.05%				4%	4%
5	0.3033			1.00%				10.7%	10.7%
6	0.0146			0.05%				2.67%	2.67%
7	0.1990			0.65%				7.2%	7.2%
8	0.0245			0.08%				2%	2%
9	0.1831			0.60%				3.8%	Not stated
10	0.0238			0.08%				1.6%	1.6%
11	0.1410			0.46%				3.1%	3.1%
12	0.0165			0.05%				1.33%	.33%
13	0.1072			0.35%				2%	2%
THD3				2.62%				23%	13%
					-				

¹ THD = Total Harmonic Distortion

² PWHD = Partial Weighted Harmonic Distortion ³ THD = Total Harmonic Distortion

ESS Issue i Ameridinent o 2021										
PWHD ⁴				3.28%					23%	22%
Power Generating Module rating per phase (rpp)			10.5	kVA		Harmonic % = Measured Value (A) x 23/rating per phase (kVA)				
Single or three phase measurements (for single phase measurements, only complete L1 columns below).				Single phase						
Harmonic	A	t 45-55%	of Regi s	stered Capacity	y			Lir	mit in BS EN 6100	1 2 1 2
	Measured Valu	ue (MV) in	Amps	Measured Val	ue (N	/IV) ir	n %			J-J-12
	L1	L2	L3	L1	L	.2	L	3	1 phase	3 phase
2	0.0260			0.057%					8%	8%
3	0.6198			1.358%					21.6%	Not stated
4	0.0142			0.031%					4%	4%
5	0.3054			0.669%					10.7%	10.7%
6	0.0217			0.048%					2.67%	2.67%
7	0.2072			0.454%				7.2%		7.2%
8	0.0175			0.038%					2%	2%
9	0.1544			0.338%					3.8%	Not stated
10	0.0175			0.038%					1.6%	1.6%
11	0.2329			0.510%					3.1%	3.1%
12	0.0153			0.034%					1.33%	1.33%
13	0.1502			0.329%					2%	2%
THD ⁵				1.81%					23%	13%
PWHD ⁶				2.01%					23%	22%
Harmonic		At 100% c	of Regis	tered Capacity				1 :-		
	Measured valu	ie (MV) in	Amps	Measured valu	ue (N	1V) in	%		mit in BS EN 6100	J-J-12
	L1	L2	L3	L1	L	.2	L	3	1 phase	3 phase
2	0.0450			0.10%			8%		8%	

⁴ PWHD = Partial Weighted Harmonic Distortion

 $^{^{5}}$ THD = Total Harmonic Distortion

⁶ PWHD = Partial Weighted Harmonic Distortion

ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021

3	0.0163	2.01%	04.00/	Not stated
5	0.9162	2.01%	21.6%	Not stated
4	0.0145	0.03%	4%	4%
5	0.3955	0.87%	10.7%	10.7%
6	0.0230	0.05%	2.67%	2.67%
7	0.1984	0.43%	7.2%	7.2%
8	0.0280	0.06%	2%	2%
9	0.2056	0.45%	3.8%	Not stated
10	0.0252	0.06%	1.6%	1.6%
11	0.1555	0.34%	3.1%	3.1%
12	0.0196	0.04%	1.33%	.33%
13	0.1179	0.26%	2%	2%
THD7		2.41%	23%	13%
PWHD ⁸		2.96%	23%	22%

 ⁷ THD = Total Harmonic Distortion
⁸ PWHD = Partial Weighted Harmonic Distortion

3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC P28.

The standard test impedance is 0.4 Ω for a single phase **Power Generating Module** (and for a two phase unit in a three phase system) and 0.24 Ω for a three phase **Power Generating Module** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

							1					
Test start date			16 Jul 2021			Test end date				16 Jul 2021		
Test location		Intertek Testing Services Shenzhen Ltd, Guangzhou Branch Testing Laboratory										
				No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China								
Starting				Stoppi	ing				Runnin	g		
d max	d c	d c d(t)		(t)	d max	d max		d	(t)	P st	P It 2 hours	
0.5	5 0.37		0		0.63		0.36 (0.44	0.48	
0.5	0.37		0		0.63		0.36	0		0.44	0.48	
NA	NA		NA		NA		NA	Ν	A	NA	NA	
4%	3.3	%	3	.3%	4%		3.3%	3	.3%	1.0	0.65	
R				Ω		XI					Ω	
R		0.24 * 0.4 ^		Ω		XI					Ω	
R				Ω	XI						Ω	
	d max 0.5 0.5 NA 4% R R R	No. Starting d max d c 0.5 0.3 0.5 0.3 NA NA 4% 3.3 R R R	Intertek Testing No. 7-2. Caipin Starting d max d c 0.5 0.37 0.5 0.37 NA NA 4% 3.3% R 0.24 * 0.4 ^	Intertek Testing Se No. 7-2. Caipin Roa Starting d max d c d 0.5 0.37 0 0.5 0.37 0 NA NA NA 4% 3.3% 3 R 0.24 * 0.4 ^	Intertek Testing Services S No. 7-2. Caipin Road, Scier Starting d max d c d(t) 0.5 0.37 0 0.5 0.37 0 NA NA NA NA NA NA NA NA R 0.3% 3.3% R □ Ω Ω		$ \begin{array}{c c c c c c } & \label{eq:linearized} & eq$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Intertek Testing Services Shenzhen Ltd, Guangzhou No. 7-2. Caipin Road, Science City, GETDD, Guangz Starting Stopping d max d c d (t) d max d c d c d 0.5 0.37 0.63 0.36 0 NA S Q XI C XI C R 0.24 * </td <td>Intertek Testing Services Shenzhen Ltd, Guangzhou Bran No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, O Starting Stopping d max d c d(t) d max d c d(t) 0.5 0.37 0 0.63 0.36 0 0.5 0.37 0 0.63 0.36 0 NA NA NA NA NA NA 4% 3.3% 3.3% 4% 3.3% 3.3% 2.1 0.15 R 0.24 * Q XI 0.15 0.15 0.15 0.15 R 0.24 * Q XI 0.15 0.15 0.25</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	Intertek Testing Services Shenzhen Ltd, Guangzhou Bran No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, O Starting Stopping d max d c d(t) d max d c d(t) 0.5 0.37 0 0.63 0.36 0 0.5 0.37 0 0.63 0.36 0 NA NA NA NA NA NA 4% 3.3% 3.3% 4% 3.3% 3.3% 2.1 0.15 R 0.24 * Q XI 0.15 0.15 0.15 0.15 R 0.24 * Q XI 0.15 0.15 0.25	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

* Applies to three phase and split single phase **Power Generating Module**s. Delete as appropriate.

^ Applies to single phase **Power Generating Module** and **Power Generating Module**s using two phases on a three phase system. Delete as appropriate.

4. Power quality – DC injection: The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels ±5%. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current

where the base current is the **Registered Capacity** (W) / Vphase. The % DC injection should not be greater than 0.25%.

7.0 kW									
Test power level	10%	55%	100%						
Recorded DC value in Amps	0.0166	0.0188	0.0198						
as % of rated AC current	0.052%	0.059%	0.062%						
Limit	0.25%	0.25%	0.25%						
	10.5 kW								
Test power level	10%	55%	100%						
Recorded DC value in Amps	0.0236	0.0248	0.0199						
as % of rated AC current	0.049%	0.052%	0.042%						
Limit	0.25%	0.25%	0.25%						

5. Power Factor: The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2.

Note that the value of voltage stated in brackets assumes a **LV** connection. This should be adjusted for **HV** as required.

7.0 kW								
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)					
Measured value	0.9996	0.9995	0.9995					
Power Factor Limit	>0.95	>0.95	>0.95					
	10.5 kW							
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)					
Measured value	0.9996	0.9996	0.9996					
Power Factor Limit	>0.95	>0.95	>0.95					

6. Protection – Frequency tests: These tests should be carried out in accordance with the Annex A.7.1.2.3. For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"		
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F stage 1	47.5 Hz	20 s	47.45 Hz	20.029s	47.7 Hz 30 s	No trip	
U/F stage 2	47 Hz	0.5 s	46.96 Hz	0.523s	47.2 Hz 19.5 s	No trip	
					46.8 Hz 0.45 s	No trip	
O/F	52 Hz	0.5 s	52.05Hz	0.558s	51.8 Hz 120.0 s	No trip	
					52.2 Hz 0.45 s	No trip	

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2. For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Note that the value of voltage stated below assumes a **LV** connection This should be adjusted for **HV** taking account of the VT ratio as required.

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	183.7V	2.531s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0 s	263.1V	1.015 s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.6V	0.507 s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out

Υ

at the setting ±4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

Test Power and imbalance	33%	66%	100%	33%	66%	100%
	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5s ⁹	0.338s	0.202s	0.302s	0.292s	0.179s	0.194s

Loss of Mains Protection, Vector Shift Stability test: This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the **Power Generating Module** does not trip under positive / negative vector shift.

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.5 Hz	+50 degrees	No trip
Negative Vector Shift	50.5 Hz	- 50 degrees	No trip

Loss of Mains Protection, RoCoF Stability test: This test should be carried out in accordance with Annex A.7.1.2.6. Confirmation is required that the **Power Generating Module** does not trip for the duration of the ramp up and ramp down test.

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	No trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip

9. Limited Frequency Sensitive Mode – Overfrequency test: The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%.

This test should be carried out in accordance with Annex A.7.1.3, which also contains the measurement tolerances.

Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4.

Alternatively, test results should be noted below:

 $^{^9}$ If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form.

ESS				
Test sequence at Registered Capacity >80%	Measured Active Power Output(W)	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00Hz ±0.01Hz	10573.4	50.00		NA
Step b) 50.45Hz ±0.05Hz	10468.0	50.45		10.03%
Step c) 50.70Hz ±0.10Hz	9939.5	50.70	DC SOURCE	10.01%
Step d) 51.15Hz ±0.05Hz	8987.9	51.15		10.00%
Step e) 50.70Hz ±0.10Hz	9933.6	50.70		9.92%
Step f) 50.45Hz ±0.05Hz	10471.6	50.45		10.39%
Step g) 50.00Hz ±0.01Hz	10569.4	50.00		NA
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output(W)	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00Hz ±0.01Hz	5045.9	50.00		NA
Step b) 50.45Hz ±0.05Hz	4996.6	50.45		10.24%
Step c) 50.70Hz ±0.10Hz	4745.7	50.70	DC SOURCE	10.09%
Step d) 51.15Hz ±0.05Hz	4286.8	51.15		9.97%
Step e) 50.70Hz ±0.10Hz	4858.5	50.70]	10.53%
Step f) 50.45Hz ±0.05Hz	4996.0	50.45]	10.11%
Step g) 50.00Hz ±0.01Hz	5044.6	50.00		NA

10. Protection – Re-connection timer

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation

Γ

should be provided that the **Power Generating Module** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.				
60s	78.4s	At 1.16 pu (266.2 V LV connection, 127.6 V HV connection assuming 110 V ph-ph VT)	At 0.78 pu (180.0 V LV connection, 85.8 V HV connection assuming 110 V ph- ph VT)	At 47.4 Hz	At 52.1 Hz	
Confirmation that the Power Generating Module does not re-connect.		No reconnection	No reconnection	No reconnection	No reconnection	

11. Fault level contribution: These tests shall be carried out in accordance with EREC G99 Annex A.7.1.5. Please complete each entry, even if the contribution to the fault level is zero.

For Inverter output				
Time after fault	Volts	Amps		
20ms	2V	46A		
100ms	8 V	18A		
250ms	1V	5 A		
500ms	3V	1A		
Time to trip	1.3ms	In seconds		

12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.6.				
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.				
13. Wiring functional tests: If required by para 15.2.1.				
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)				
14. Logic interface (input port)				
Confirm that an input port is provided and can be used to shut down the module	Yes			
Provide high level description of logic interface, e.g. details in 11.1.3.1 such as AC or DC signal (the additional comments box below can be used)	Yes			

High level description of logic interface: By default the logic interface will take the form of a simple binary output that can be operated by a simple switch or contactor. When the switch is open the Power Generating Module can operate normally. When the switch is closes the Power Generating Module will reduce its Active Power to zero within 1 s.	
15. Cyber security	
Confirm that the Power Generating Module has been designed to comply with cyber security requirements, as detailed in 9.1.7.	Yes
Additional comments.	